A Change Detection Method for Remote Sensing Image Based on Multi-feature Differencing Kernel Svm
نویسندگان
چکیده
Based on the support vector machine (SVM) tools and multiple kernel method, the combinations of kernel functions were mainly discussed. The construction method of image differencing kernel with multi-feature (spectral feature and textural feature) has been developed. Through this method and weighting of the categories’ samples, the improved SVM change detection model has been proposed, which could realize the direct extraction of spatial distribution information from several change classes. From the experiments we can draw the following conclusions: with the help of multiple kernel function integrating spectral features and texture information, the new change detection model can achieve higher detection accuracy than the traditional methods and is suitable for the small-sample experiment. Furthermore, it avoids the complex and uncertainty in determining change threshold required in the old detection methods.
منابع مشابه
مقایسه روش های مختلف آشکارسازی تغییرات کاربری اراضی در منطقه بیابانی دهلران استان ایلام
Timely and accurate change detection of earth surface features is extremely important for understanding relationships and interaction between human and natural phenomena in order to promote better decision making. Remote sensing data are primary sources extensively used for change detection in recent decades. In this study, images of Landsat (TM) 1985 and Landsat (ETM+) 2007 were analyzed using...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملChange Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images
The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملA Hybrid Kernel-Based Change Detection Method for Remotely Sensed Data in a Similarity Space
Detection of damages caused by natural disasters is a delicate and difficult task due to the time constraints imposed by emergency situations. Therefore, an automatic Change Detection (CD) algorithm, with less user interaction, is always very interesting and helpful. So far, there is no existing CD approach that is optimal and applicable in the case of (a) labeled samples not existing in the st...
متن کامل